Categorification of Skew-symmetrizable Cluster Algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster Automorphisms and the Marked Exchange Graphs of Skew-Symmetrizable Cluster Algebras

Cluster automorphisms have been shown to have links to the mapping class groups of surfaces, maximal green sequences and to exchange graph automorphisms for skew-symmetric cluster algebras. In this paper we generalise these results to the skew-symmetrizable case by introducing a marking on the exchange graph. Many skew-symmetrizable matrices unfold to skew-symmetric matrices and we consider how...

متن کامل

Tubular Cluster Algebras I: Categorification

We present a categorification of four mutation finite cluster algebras by the cluster category of the category of coherent sheaves over a weighted projective line of tubular weight type. Each of these cluster algebras which we call tubular is associated to an elliptic root system. We show that via a cluster character the cluster variables are in bijection with the positive real Schur roots asso...

متن کامل

Categorification of acyclic cluster algebras: an introduction

This is a concise introduction to Fomin-Zelevinsky's cluster algebras and their links with the representation theory of quivers in the acyclic case. We review the definition cluster algebras (geometric, without coefficients), construct the cluster category and present the bijection between cluster variables and rigid indecomposable objects of the cluster category.

متن کامل

Cluster Algebras and Semipositive Symmetrizable Matrices

Cluster algebras are a class of commutative rings introduced by Fomin and Zelevinsky. It is well-known that these algebras are closely related with different areas of mathematics. A particular analogy exists between combinatorial aspects of cluster algebras and Kac-Moody algebras: roughly speaking, cluster algebras are associated with skew-symmetrizable matrices while Kac-Moody algebras corresp...

متن کامل

Cluster Algebras of Finite Type and Positive Symmetrizable Matrices

The paper is motivated by an analogy between cluster algebras and Kac-Moody algebras: both theories share the same classification of finite type objects by familiar Cartan-Killing types. However the underlying combinatorics beyond the two classifications is different: roughly speaking, Kac-Moody algebras are associated with (symmetrizable) Cartan matrices, while cluster algebras correspond to s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebras and Representation Theory

سال: 2010

ISSN: 1386-923X,1572-9079

DOI: 10.1007/s10468-010-9228-4